
Webinars

About Postgres Professional

2

● Founded in 2015 by PostgreSQL contributors Oleg Bartunov &
Teodor Sigaev.

○ 24/7/365 support for PostgreSQL
○ Migrations to PostgreSQL
○ Remote DBA for PostgreSQL
○ HA PostgreSQL deployments
○ Database audits

● 2 supported PostgreSQL forks:
○ Postgres Pro Standard (early access to PostgreSQL features,

1-3 years prior to the official release)
○ Postgres Pro Enterprise (enterprise-ready version of Postgres)

● Custom feature development for PostgreSQL

About me

● PostgreSQL contributor since 2015
○ Index-only scan for GiST
○ Microvacuum for GiST
○ B-tree INCLUDE clause
○ B-tree deduplication
○ pg_probackup co-maintainer

● Tier 3 support for PostgreSQL
and PostgresPro solutions

● Education and mentoring

3

Agenda for today’s webinar

● Major features of the release

○ b-tree deduplication
○ incremental sorting
○ parallelized vacuum
○ enhanced partitioning

● Notable improvements for

○ backups & verification
○ security
○ many other areas

● Steps toward future improvements

4

Backward compatibility

● wal_keep_segments → wal_keep_size
○ wal_keep_size = wal_keep_segments * wal_segment_size
○ New setting: max_slot_wal_keep_size

● effective_io_concurrency
○ Use formula from release notes to tune the value
○ New parameter: maintenance_io_concurrency.

● Wait events renamed to improve consistency
○ Hash/Batch/Allocating → HashBatchAllocate
○ ControlFileLock → ControlFile
○ clog → XactBuffer
○ AsyncCtlLock → NotifySLRU

https://postgresqlco.nf - PostgreSQL configuration for HUMANS
5

https://postgresqlco.nf

B-tree deduplication

6

B-tree deduplication

● Transparently makes indexes 2.5X — 5X smaller (on real data)

● On TPC-H benchmark it saves 40% of space
○ 5921 MB → 3576 MB

● New b-tree parameter: deduplicate_items

○ Enabled by default for all user indexes

● Opclass restrictions
○ Does not support numeric, float and container types

● Deduplication overhead is amortized across insertions
○ Only 2% overhead on append-only benchmark

● REINDEX after upgrade to make use of it

7

B-tree deduplication in UNIQUE index

● Allows to delay splits caused by MVCC copies

● In synergy with microvacuum, helps to avoid index bloat

● Benchmark with pgbench

○ Old index growth: 10.5 GiB → 19.4 GiB

○ New index growth: 10.5 GiB → 12.7 GiB

● REINDEX after upgrade to make use of it

8

Incremental sorting

● Optimizes multikey sorting when intermediate result
is sorted on a prefix
○ Reduces memory consumption
○ Read less rows with LIMIT

● Useful for
○ ORDER BY
○ DISTINCT
○ GROUP BY
○ window functions (only in v14)
○ merge joins

● New parameter: enable_incrementalsort

○ Enabled by default

9

Incremental sorting. Example

CREATE TABLE test (id integer, data char(100));
CREATE INDEX on test (id);

INSERT INTO test SELECT i%1000, 'payload'
FROM generate_series(0,10000000) AS i;

table_size = 1.3 Gb, index_size = 66 Mb

EXPLAIN ANALYZE SELECT id, data FROM test
ORDER BY id, data LIMIT 1000;

10

Plan Time, ms

Incremental Sort over Index Scan 25

Sort over Seq Scan
with 2 parallel workers

600

Disk-based Hash Aggregation

● Optimized hash aggregation
○ Spills hash table to disk when it exceeds memory limit

○ Chooses HashAggregaton more often

● No more OOM killer because of the planner’s mistakes

● New parameter: hash_mem_multiplier

○ Compute memory limit for hash tables as
work_mem * hash_mem_multiplier

○ Default is 1

● Typical query:
SELECT count(*) FROM test GROUP BY id;

11

Parallel VACUUM

● Indexes are processed in parallel
○ 2 times faster with 3 workers

○ The table itself is still vacuumed by one process.

● New vacuum option: PARALLEL n_workers

○ Enabled by default

○ n_workers is limited by max_parallel_maintenance_workers
and the number of indexes.

○ index size must be > min_parallel_index_scan_size

● Limitations:
○ not VACUUM FULL

○ not autovacuum

12

Improved autovacuum

● Now autovacuum runs for for append-only tables
○ It allows to use index-only scans for such tables

○ It prevents transaction id wraparound

● New parameters:

 autovacuum_vacuum_insert_threshold,

 autovacuum_vacuum_insert_scale_factor

13

Partition-wise join

● An exact match of partition bounds is no longer needed

○ i.e. table partitioned by days & table partitioned by weeks

● New parameter: enable_partitionwise_join

○ Disabled by default

● Limitations:
○ only works for equi-join (join on t1.a = t2.b)

14

Logical replication
of partitioned tables

● Replicate partitioned table easily.

● Replicate regular table to a partitioned one.
○ Especially useful to run analytical queries on replicas.

15

Before ROW trigger
for partitioned table

● Create BEFORE trigger for partitioned table easily.

● Limitation:
○ Trigger function cannot reroute tuple to another partition

16

Backups and verification

● pg_basebackup creates a “backup manifest”

○ Enabled by default

● pg_verifybackup
○ checks files in the backup
○ checks WAL files (relies on pg_waldump)

● pg_stat_progress_basebackup
system view to report the progress of streaming base backups

17

Security

● Change authentication defaults for a new instance
○ peer (or md5) for local connections and md5 for external

○ Be aware that packaged Postgres can apply extra changes

● Add "password_protocol" connection parameter to libpq
○ Default is plaintext

● Raise default minimum TLS version from 1.0 to 1.2
○ ssl_min_protocol_version

● Show the ssl_passphrase_command setting only to superusers

18

More features of PG 13

● TRUSTED extensions
○ create extension without a superuser privileges

○ List of built-in trusted extensions is HERE

○ check recent CVE-2020-14349

● Online change for some parameters

○ primary_conninfo, primary_slot_name

and wal_receiver_create_temp_slot

● Recovery will pause if PITR target not reached

19

https://github.com/postgres/postgres/commit/eb67623c965b4759a96309cdb58a17339fc5d401

More features of PG 13

● TOAST extraction and decompression improvement

● pg_dump for foreign tables

● Extended monitoring
○ log_statement_sample_rate
○ log_min_duration_sample

● Glossary in documentation

20

https://www.postgresql.org/docs/13/glossary.html

Contribute to PostgreSQL

● Vote for features

● Share your opinion on usability

● Test early and report bugs and inconsistent behavior

● Share performance results

https://commitfest.postgresql.org/

21

https://commitfest.postgresql.org/

Thank you for attention!
Any questions?

a.lubennikova@postgrespro.com

https://postgrespro.com/

mailto:a.lubennikova@postgrespro.com
https://postgrespro.com/

